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1. Introduction

Spinor-helicity methods have been used in work on gauge theories for many years. Spinor

expressions for S-matrix elements are usually much simpler than the sum of contributing

Feynman diagrams as in the strikingly simple Parke-Taylor [1] formula for color ordered

maximal helicity violating (MHV) gluon amplitudes in tree approximation:

An(1−, 2−, 3+, . . . , n+) =
〈1 2〉4

〈12〉〈23〉 · · · 〈n1〉
. (1.1)

The bracket 〈j k〉 = −〈k j〉 is the invariant product of positive helicity spinor solutions of

the massless Dirac equation for particles of 4-momentum pµ
j and pµ

k . Much information

about the formalism can be found in reviews such as [2 – 4]. The subject was reinvigorated

by the use of twistor ideas [5] which led to recursion relations [6] for tree amplitudes in

which the spinors are treated as complex variables. Feynman diagram computations can

be replaced by the algebraic process of solving the recursion relations.

Recursion relations have also been derived for tree approximation graviton ampli-

tudes [7, 8], and these are an important ingredient of this paper. MHV amplitudes describe

processes involving two negative and (n − 2) positive helicity particles. It is well known

that these are simpler in both gauge theory and gravity than non-MHV amplitudes which

have more than two negative helicity particles. Our primary concern is the set of MHV

graviton amplitudes Mn(1−, 2−, 3+, . . . , n+).

Our interest in this subject was motivated by recent papers in which the 3-loop graviton

4-point function was calculated in N = 8 supergravity and shown to be ultraviolet finite [9,

10]. The structures found in the calculation (and in earlier work cited in these papers) led

the authors to speculate that the S-matrix of N = 8 supergravity is ultraviolet finite to all

orders of perturbation theory. In the computational approach used in this program loop
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amplitudes are constructed from tree amplitudes by studying unitarity cuts. Thus tree

approximation amplitudes are a basic ingredient of higher loop calculations and simplified

expressions for tree amplitudes can be useful.

The well known KLT relations [11] express graviton tree amplitudes Mn in terms of

products An A′
n of gluon amplitudes in which the momenta in A′

n are a permutation of

those of An. The KLT relations for n = 4 and n = 5 external lines are

M4(1, 2, 3, 4) = −s12 A4(1, 2, 3, 4)A4(1, 2, 4, 3) , (1.2)

M5(1, 2, 3, 4, 5) = s23 s45 A5(1, 2, 3, 4, 5)A5(1, 3, 2, 5, 4) + (3 ↔ 4) . (1.3)

The formulas are more complicated for general n. (See appendix A of [12].) The KLT

relations are valid for all helicity configurations, and similar formulas relate amplitudes for

any choice of particles in supergravity to products of amplitudes in supersymmetric gauge

theory. In particular tree amplitudes in N = 8 supergravity are related to products of

amplitudes for N = 4 gauge theory.

The KLT relations were obtained from string theory. From the perspective of field

theory, however, the relations are very surprising. The Lagrangian of Yang-Mills theory,

with 3- and 4-point vertices only, appears to be far simpler than the Einstein-Hilbert

Lagrangian, which contains complicated n-point two-derivative interactions. While the 4-

point KLT relation has been derived directly from graviton Feynman rules [13], and field

redefinitions have been explored [14, 15], no general field theory derivation has been given.

The work presented here is a modest step towards such a derivation and toward the

goal of simplified amplitudes. We present two formulas for n-graviton MHV amplitudes,

each of which expresses Mn(1−, 2−, 3+, . . . , n+) as a sum of terms containing squares

An(1−, 2−, i+3 , . . . , i+n )2 of gluon amplitudes, where i3, . . . , in indicates a permutation of

the positive helicity lines. The first formula is derived from recursion relations. The com-

plicated structure of the Lagrangian is thus avoided, but field theoretic properties such as

analyticity and factorization underlie the recursion relations, and the on-shell 3-graviton

vertex is required. The second formula is obtained by manipulation of a recently presented

version [16] of the BGK formula [17].

The formula derived from recursion relations is (for n ≥ 4)

Mn(1−, 2−, 3+, . . . , n+) =
∑

P(i3,...,in)

s1in

(

n−1
∏

s=4

βs

)

An(1−, 2−, i+3 , . . . , i+n )2 , (1.4)

where1

βs = −
〈is is+1〉

〈2 is+1〉
〈2| i3 + i4 + · · · + is−1|is] . (1.5)

1The notation includes spinors j], k] which are negative helicity solutions of the Dirac equation for null

momenta pµ
j , pµ

k . They appear through [j k] and 〈j|i|k] which are defined by (pµ
i is also null)

[j k] =
sjk

〈k j〉
= −

(pj + pk)2

〈k j〉

〈j| i |k] = 〈j| /pi |k] = 〈j i〉[i k] .
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The sum in (1.4) is over all permutations P(i3, . . . , in) of the external positive helicity

labels {3, 4, . . . , n}. Our new version of the BGK formula is

Mn(1−, 2−, 3+, . . . , n+)=
∑

P(i4,...,in)

〈12〉〈i3i4〉

〈1i3〉〈2i4〉
s1in

(

n−1
∏

s=4

βs

)

An(1−, 2−, i+3 , . . . , i+n )2, (1.6)

with the same βs. The distinguished line i3 can be any chosen member of the set

{3, 4, . . . , n}, and the sum includes all permutations of the remaining n − 3 members.

The evidence that the formulas above are correct includes:

(i) analytic proof that (1.4) agrees for all n with the MHV formula given in [7].

(ii) Analytic proof for n = 4, 5 that both (1.4) and (1.6) agree, and also agree with the

KLT results (1.2)–(1.3).

(iii) Numerical work showing that (1.4) agrees with the original BGK formula [17] for all

n ≤ 12.

(iv) Numerical tests of the agreement between (1.4) and (1.6) for all n ≤ 12 and additional

tests that different choices of i3 in (1.6) do not change the result.

The derivation of (1.4) follows the approach of [7] to recursion relations, but we orga-

nize permutations differently and use gauge theory recursion relations to simplify the work

and the result. This is presented in section 2. In section 3 the passage from the BGK for-

mula of [16] to (1.6) is outlined. It would be interesting and useful to extend the treatment

of recursion relations to non-MHV amplitudes, but this is much more difficult. Our progress

here is limited to a formula for the anti-MHV 5-point function M5(1
−, 2−, 3−, 4+, 5+) pre-

sented in section 4.

2. Derivation of MHV formula (1.4)

The simple elegant theory underlying recursion relations has been described clearly in [6 –

8], so we dispense with the background and start with the elements we need. Recursion

relations require a shift of either the | j ] or | j 〉 spinor of a pair of momenta in n-point tree

amplitudes. We follow [7] and use a [2, 1〉-shift, i.e.

|1̂〉 = |1〉 − z|2〉 , |1̂] = |1] , |2̂] = |2] + z|1] , |2̂〉 = |2〉 . (2.1)

Recursion relations are valid if the analytically continued amplitude vanishes at large z,

and this property holds for (−−) shifts for gluons [6] and for MHV gravitons [18].

With this choice, the gluon and graviton MHV recursion relations become particularly

simple. The gluon recursion relation contains the single term

An(1−, 2−, 3+, . . . , n+) = A3(1̂
−,−P+

1̂n
, n+)

1

s1n

An−1(P
−

1̂n
, 2̂−, 3+, . . . , (n − 1)+) , (2.2)
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since color order must be preserved. The graviton recursion relation

Mn(1−, 2−, 3+, . . . , n+) =
∑

Pc(i3,...,in)

M3(1̂
−,−P+

1̂in
, i+n )

1

s1in

Mn−1(P
−

1̂in
, 2̂−, i+3 , . . . , i+n−1) (2.3)

contains one term for each of the positive helicity lines. (The sum is over the cyclic

permutations of these lines.)

In the recursion relations (2.2)–(2.3) each term is evaluated at the value of z that takes

the shifted momentum Pµ

1̂k
on-shell. Hence

0 = P 2
1̂k

= 〈1̂ k〉[1 k] =
(

〈1 k〉 − z〈2 k〉
)

[1 k] , (2.4)

determines the value

z =
〈1k〉

〈2k〉
. (2.5)

The formula (1.4) can be established by an inductive argument using the fact that M3

and A3 are simply related by

M3(1
−,−P+

1̂k
, j+) = A3(1

−,−P+
1̂k

, j+)2. (2.6)

The basis of induction is established by showing that our formula reproduces the KLT

result for n = 4. This is done at the end of the section. We assume that (1.4) holds for

Mn, and then use the recursion relation for Mn+1 as follows:

Mn+1

(

1−, 2−, 3+, . . . , (n + 1)+
)

=
1

(n − 2)!

∑

P(i3,...,in+1)

M3(1̂
−,−P+

1̂in+1

, i+n+1)
1

s1in+1

Mn(P−

1̂in+1

, 2̂−, i+3 , . . . , i+n ) .

Bose symmetry of Mn under exchange of any two positive helicity lines was used to turn

the sum over cyclic permutations in (2.3) into a sum over all permutations. The factor

1/(n − 2)! compensates the overcounting.

The formula (1.4) is now substituted for the n-point graviton amplitude, and (2.6) is

used to write M3 = A2
3. Then

Mn+1

(

1−, 2−, 3+, . . . , (n + 1)+
)

=
1

(n − 2)!

∑

P(i3,...,in+1)

A3(1̂
−,−P+

1̂in+1

, i+n+1)
2 1

s1in+1

×
∑

P(i3,...,in)

sin P
1̂in+1

(

n−1
∏

s=4

βs

)

An(P−

1̂in+1

, 2̂−, i+3 , . . . , i+n )2

=
∑

P(i3,...,in+1)

A3(1̂
−,−P+

1̂in+1

, i+n+1)
2 1

s1in+1

sinP
1̂in+1

(

n−1
∏

s=4

βs

)

An(P−

1̂in+1

, 2̂−, i+3 , . . . , i+n )2

=
∑

P(i3,...,in+1)

s1in+1
sin P

1̂in+1

(

n−1
∏

s=4

βs

)

An+1

(

1−, 2−, i+3 , . . . , i+n+1

)2
. (2.7)
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The factor 1/(n− 2)! cancels because of the redundant inner permutation sum. In the last

line we use the gauge theory recursion relation (2.2) to replace the product A3An by sAn+1.

The final step in the proof is to show that sin P
1̂in+1

= βn. Recall that Pµ

1̂in+1

is a null

vector with z evaluated as in (2.5), i.e. z = 〈1 in+1〉/〈2 in+1〉. Then, using that P 2
1̂in+1

= 0,

we have

sinP
1̂in+1

=−
(

pin +(p1̂+pin+1
)
)2

=−2pin · p1̂−2pin+1
· pin

=−〈1̂in〉[1̂in]−〈in+1in〉[in+1in]

= −
[1 in]

〈2 in+1〉

(

〈1 in〉〈2 in+1〉 − 〈2 in〉〈1 in+1〉
)

− 〈in+1 in〉[in+1 in]

=
〈in in+1〉

〈2 in+1〉

(

〈21〉[1 in] + 〈2 in+1〉[in+1 in]
)

=
〈in in+1〉

〈2 in+1〉
〈2| 1 + in+1|in]

= −
〈in in+1〉

〈2 in+1〉
〈2| i3 + i4 + · · · + in−1|in] = βn . (2.8)

We used the Schouten identity in the 5th line and momentum conservation in the last

step. This establishes (1.4) for Mn+1, and the inductive proof is complete.

Let’s examine the cases n = 4, 5 of (1.4) in more detail. For n = 4, the product in (1.4)

is over the empty set and is set equal to 1. One then finds

M4(1
−, 2−, 3+, 4+) = s14 A4(1

−, 2−, 3+, 4+)2 + (3 ↔ 4) . (2.9)

Using the explicit form of gluon tree amplitudes (1.1) one can show (using momentum con-

servation) that A4(1
−, 2−, 3+, 4+) differs from A4(1

−, 2−, 4+, 3+) differ by a simple factor

of s13/s14, and hence (2.9) gives

M4(1
−, 2−, 3+, 4+) =

(

s14
s13

s14
+ s13

s14

s13

)

A4(1
−, 2−, 3+, 4+)A4(1

−, 2−, 4+, 3+) .(2.10)

The KLT result (1.2) then follows from s12 + s13 + s14 = 0.

For n = 5,

n−1
∏

s=4

βs = β4 = −
〈i4 i5〉

〈2 i5〉
〈2| i3|i4] = −

〈i4 i5〉

〈2 i5〉
〈2 i3〉[i3 i4] . (2.11)

Using this one can show analytically that (1.4) reproduces the KLT result (1.3).

2.1 Connection to the graviton MHV formula of [7]

The result of [7] for MHV graviton amplitudes is

Mn(1−, 2−, 3+, . . . , n+) (2.12)

= (−1)n+1
∑

P(i3,...,in)

〈12〉6[1in]

〈1in〉

1

2

[i3i4]

〈2i3〉〈2i4〉〈i3i4〉〈i3i5〉〈i4i5〉

(

n−1
∏

s=5

〈2|i3 + · · · + is−1|is]

〈2is+1〉〈isis+1〉

)

.
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It is not difficult to obtain (2.12) from (1.4). We write the gauge theory MHV

amplitude as

An

(

1−, 2−, i+3 , . . . , i+n
)

=
〈1 2〉3

〈2 i3〉〈i3 i4〉
(

∏n−1
s=4 〈is is+1〉

)

〈in 1〉
. (2.13)

Substitute this into the MHV relation (1.4) and use s1in = −〈1 in〉[1 in]. Then

Mn(1−, 2−, 3+, . . . , n+)

= (−1)n
∑

P(i3,...,in)

s1in

(

n−1
∏

s=4

〈is is+1〉

〈2 is+1〉
〈2| i3 + · · · + is−1|is]

)

An(1−, 2−, i+3 , . . . , i+n )2

= (−1)n+1
∑

P(i3,...,in)

〈1 2〉6 [1 in]

〈2 i3〉2〈i3 i4〉2〈1 in〉

〈2| i3|i4]

〈2 i5〉〈i4 i5〉

(

n−1
∏

s=5

〈2| i3 + · · · + is−1|is]

〈2 is+1〉〈is is+1〉

)

. (2.14)

Using that 〈2| i3|i4] = 〈2 i3〉[i3 i4], we find

Mn(1−, 2−, 3+, . . . , n+) (2.15)

= (−1)n+1
∑

P(i3,...,in)

〈1 2〉6 [1 in]

〈1 in〉

[i3 i4]

〈2 i3〉〈2 i5〉〈i3 i4〉2〈i4 i5〉

(

n−1
∏

s=5

〈2| i3 + · · · + is−1|is]

〈2 is+1〉〈is is+1〉

)

.

This is not quite the result (2.12). Note though that under exchange of i3 and i4, the

product
∏

is invariant. Since we are summing over all permutations of the positive helicity

lines ik, we can include explicitly the i3 ↔ i4 permutation and divide by 2 to compensate

for the overcounting. This allows us to rewrite (2.15) as

[i3 i4]

〈2 i3〉〈2 i5〉〈i3 i4〉2〈i4 i5〉
→

1

2

[i3 i4]

〈2 i5〉〈i3 i4〉2

(

1

〈2 i3〉〈i4 i5〉
−

1

〈2 i4〉〈i3 i5〉

)

=
1

2

[i3 i4]

〈2 i3〉〈2 i4〉〈i3 i4〉〈i3 i5〉〈i4 i5〉
,

by the Schouten identity. This gives (2.12) exactly.

3. BGK as (gauge theory)2

The authors of [16] presented the BGK formula in a simpler form, which we write here as

Mn = −〈a b〉8
∑

P(i4,...,in)

∏n
s=4〈n| 2 + i4 + i5 + · · · + is−1| is]

〈1 in〉〈1n〉2〈2n〉2〈1 2〉〈2 i4〉〈in n〉
(
∏n−1

s=4 〈is is+1〉〈is n〉
) . (3.1)

The external lines are (1+, 2+, . . . , a−, . . . , b−, . . . , n+) and the permutation sum

P(i4, . . . , in) is over momentum labels {3, 4, . . . , n − 1}.

The formula (1.6) is a simple rewriting of (3.1). First we relabel the external legs

to the effect of interchanging p2 and pn. Then we select the negative helicity lines to be

a = 1 and b = 2, and we introduce i3 = n. Finally we rewrite the products in (3.1) to

– 6 –
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explicitly include the A2
n factor. The result is the formula (1.6). It is clear that by an

initial relabeling of the external lines, the distinguished line i3 could have been any one of

the positive helicity lines.

The original BGK formula [17] can also be rewritten as a sum over gluon amplitudes

squared, but we have chosen to work with (3.1) in order to display the form which most

closely resembles our formula (1.4).

4. A modest non-MHV result

Loop amplitudes in gravity and supergravity require more than MHV tree amplitudes as

input. For example the non-MHV amplitude2 M6(1
−, 2−, 3−, 4+, 5+, 6+) was needed in the

3-loop calculation of [9]. Thus it would be of both practical and intrinsic interest to extend

the treatment of recursion relations in section 2 to non-MHV amplitudes. Unfortunately

the non-MHV sector is more complicated for both gluons and gravitons. Our results to

date are limited to a new expression3 for the anti-MHV amplitude M5(1
−, 2−, 3−, 4+, 5+)

involving a sum over squares of gluon A5’s. Of course, this amplitude is the complex

conjugate of the MHV M5(1
+, 2+, 3+, 4−, 5−), and this fact provides a check which the

formula obtained below satisfies. We present our formula with few details as an indication

of the complications encountered in the non-MHV sector.

The relevant graviton recursion relation, obtained using a [2, 1〉 shift, is

M5(1
−, 2−, 3−, 4+, 5+) =

{

M4(1̂
−, 3−, P+

2̂4
, 5+)

1

s24
M3(−P−

2̂4
, 2̂−, 4+) + (4 ↔ 5)

}

+M4(1̂
−, P−

2̂3
, 4+, 5+)

1

s23
M3(−P+

2̂3
, 2̂−, 3−) (4.1)

Since the right side involves only 3- and 4-point functions we can insert the results (2.6)

and (2.9), with conjugation and shifts as appropriate. The result is a sum of terms involving

products (A4 A3)
2 for various configurations of momenta. The strategy of section 2 suggests

that we use gauge theory recursion relations to replace these products with (A5)
2. However

this is tricky because the recursion relation for one of the needed orderings of external gluons

has two terms4

A5(1
−, 3−, 2−, 4+, 5+) = −A4(1̂

−, P−

2̂3
, 4+, 5+)

1

s23
A3(−P+

2̂3
, 2̂−, 3−)

+A4(1̂
−, 3−, P+

2̂4
, 5+)

1

s24
A3(−P−

2̂4
, 2̂−, 4+) . (4.2)

Nevertheless we use (4.2) and the one-term recursion relations which hold for other order-

2Recursion relations were used in [8] to obtain a spinor helicity formula for this amplitude.
3A spinor helicity formula was given earlier in [19].
4The minus sign is required because of anti-cyclic ordering in the first term.

– 7 –
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ings to derive the following representation:

M5(1
−, 2−, 3−, 4+, 5+) =

{

s24 sz=z24

1̂5

[

A5(1
−, 2−, 3−, 4+, 5+) + A5(1

−, 3−, 2−, 4+, 5+)
]2

+s24 s35 A5(3
−, 1−, 2−, 4+, 5+)2

+s23 sz=z23

1̂5
A5(1

−, 2−, 3−, 4+, 5+)2
}

+ (4 ↔ 5) , (4.3)

which essentially does express the graviton MHV amplitude in terms of squares of MHV

gluon amplitudes. Readers with good eyesight will notice that the invariant s1̂5 contains a

shift to be evaluated at the appropriate poles,

P 2
2̂4

= 0 → sz=z24

1̂5
=

〈35〉[15][34]

[14]
, (4.4)

P 2
2̂3

= 0 → sz=z23

1̂5
= −

〈45〉[15][34]

[13]
. (4.5)

These results are used in the first and third line of (4.3), respectively.

5. Discussion

The formulas (1.4) and (1.6) express graviton MHV amplitudes Mn as sums of gluon MHV

amplitudes An squared. This is a first step towards obtaining general-n KLT-like relations

from field theory. We have proven our formula (1.4) by induction using recursion relations.

The fact that the BGK formula can be written in a very similar way (1.6) should facilitate

an analytic proof of the BGK formula.

It was noted in [16] that under a (−,−)-shift the BGK formula (3.1) behaves as z−2

for large z. Our rewriting (1.6) of (3.1) clearly exhibits this property too, and it also makes

it manifest that, for this type of shift, the large z-behavior of Mn is identical to that of A2
n.

On the other hand, our formula (1.4) has naively a leading z−1 fall-off. We have checked

numerically up to n = 11 that this leading term vanishes. This is an indication of the

redundancy of the (n − 2) extra permutations in (1.4) compared with (1.6).

In the proof of (1.4), we first used the gravity recursion relations to express Mn in

terms of M3 and Mn−1 and then the inductive assumption to get from Mn−1 to (sum of)

A2
n−1. A very useful step was then to use that the gauge theory recursion relations only

contained one term, so that one could replace A2
3 A2

n−1 by s2 A2
n. It is not clear that one can

generalize this step to non-MHV, since as we illustrated in section 3, the gauge recursion

relations will contain several terms. Beyond n = 5 the (−,−) shift does not seem to make

the step A2
kA

2
n−k+2 → s2 A2

n possible.

Tree amplitudes play an important role in loop calculations, and our work is a step

towards deriving useful relations of the form Mn =
∑

A2
n from field theory.
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